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+ iG2(O)/4ze, 

since [G(oo)12 =0.  

We can write Q=½(Q+Q*)+½(Q-Q*), where the 
first two terms on the right constitute its real, and the 
last two its imaginary part. Both G(R) and G'(R)/2zd 
have Hermitian symmetry, since they are Fourier 
transforms of the real functions Q(u) and uo(u), re- 
pectively. Consequently 

Q=½ G ( - R )  ~ d R + ½  G(R) dR 
o 2~zi 

? +3 [G(-R)G'(R)/2gi-G(R)G'(-R)/2gi]dR 
0 

= - {  I -°° G(S) 
G' ( -  S) 

0 ........ 2)]'-- d S  

+½S°°G(R) G ' ( - R )  1 So d 
o ..... 2~i ....... d R +  4 ~  d R  

× [ G ( -  R)G(R)]dR 

G ' ( - R )  d R -  i 
2~i T-~ [IG(R)Iz]R==~° 

G ' f - R )  
2zci exp ( -  2z~iRx)drlx=o 

By the convolution theorem, the integral is the con- 
volution of the transforms of  G(R) and of G'(R)/2zri, i.e. 

S I_ .'. Q=½ uoZ(u)du+(i/4rc)[ O(u)du] z. 
- -  c x ~  o o  
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The Relation between Reduced and Conventional Unit Cells for Centred Monoclinic Lattices 
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It is known that 13 among the 44 types of (Niggli) reduced cells correspond to centred monoclinic 
lattices. For these 13 types, the connexion is given between the reduced cell and a conventional cell. 
For centred lattices of monoclinic and orthorhombic symmetry, we describe the shape of the conven- 
tional cell for the different types of reduced cell. Errors are corrected in the section on Reduced Cells 
of the International Tables for X-ray Crystallography [Vol. I (1969), Birmingham: Kynoch Press]. 

In troduct ion  

In 1928, Niggli described a unique choice of 'reduced' 
cell among the infinitely many different primitive cells 

* Present address: GabeMitteweg 71, CH-3323 B/iriswil, 
Switzerland. 

by which a given lattice can be described. Such a unique 
choice makes it possible to list the lattice parameters in 
a standard way also in the case of monoclinic and tri- 
clinic crystals. Niggli showed how the Bravais class can 
be read offthe reduced cell, and described the connexion 
between the reduced cell and a (generally not primi- 
tive) conventional cell that respects the lattice symme- 
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try. However, he did not give a method for passing 
from an arbitrary cell to the reduced cell. An important 
step in this direction was achieved by Buerger (1957, 
1960), and the method was completed by Santoro & 
Mighell (1970). A concise account of the reduction pro- 
cedure was given by Gruber (1973). 

The third edition of Vol. 1 of International Tables for 
X-ray Crystallography contains an article on reduced 
cells by Mighell, Santoro & Donnay (1969). A number 
of errors in this article have been corrected by Mighell, 
Santoro & Donnay (1971) and by Parth6 & Hornstra 
(1973). The article includes a useful table summarizing 
and extending Niggli's results for the 44 cases of re- 
duced cell that can be distinguished. Two types of error 
remain in the table. In seven of the thirteen cases of 
centred monoclinic lattice, the transformations from 
the reduced to a conventional cell are not consistent 
with the stated conventions. The relations between the 
dimensions of a conventional cell given for centred 
lattices of orthorhombic and monoclinic symmetry are 
not always given correctly. These shortcomings have 
motivated the investigations reported in this paper. 

R e d u c e d  c e l l s  

A basis of the lattice A is a set of three lattice vectors 
~, b, ~. such that each lattice vector has the form 
nl~t+nzb+n3~, where the ni are integers. Each basis 
determines a matrix 

b a  ~ . a  ~ b  . 

Among the matrices associated with the infinitely many 
different bases that can be chosen for a given lattice 

A, there is always one and only one matrix that satisfies 
the conditions given by Niggli (1928). The reader may 
find these conditions also, e.g., in Table 5.1.2.1 of 
Mighell, Santoro & Donnay (1969) (where the sign 
for the absolute value is missing in three places) or 
in Santoro & Mighell (1970). 

A parallelepiped with edges given by the vectors of a 
basis forms a primitive cell of the lattice. If the matrix 
of the basis satisfies the Niggli conditions, the matrix, 
the cell, and the basis will be called 'reduced'. De- 
pending on the values of h .  h, b .  b, a .  a, b .  ~., h .  ~., 
and b, distinguish 44 different forms of one c a n  o 

reduced matrices. For each of these forms, Niggli has 
given the Bravais class of the lattice and he has dis- 
cussed the relations between the reduced cell and a 
conventional cell. 

C e n t r e d  m o n o c l i n i c  l a t t i c e s  

Mighell, Santoro & Donnay (1969), to whom we shall 
refer as MSD, use for primitive monoclinic lattices a 
conventional cell determined by a right-handed system 
of lattice vectors a, b, c with the following properties: 
b has the direction of the twofold symmetry axis, a is 
the shortest vector perpendicular to b, and c is the 
shortest vector perpendicular to b that makes an obtuse 
angle with a. These conditions can be expressed as 

a .  b = b .  c = 0 <  - 2 a .  c_<a2_<c 2, (1) 

where a denotes the length of a. We can divide the 
centred monoclinic lattices into C lattices, A lattices, 
and I lattices according to whether they are obtained 
from the cell (1) by centring the (a,b) face (C), centring 
the (b, c) face (A) or by body centring (I). 

Table 1. The shortest three non-coplanar vectors and the corresponding right-handed reduced bas• 

Lengths of the shortest 
three non-coplanar vectors 

Shortest Second Third 
a c d a 
a d c - a  
b d c - b  
d d c f d + 

- - d  + 

a b 
a c 
a e 

e a 
e a 
e { --a 

- - a  

e - b  
a b 
a { e -  

f - - a  
f a 
s { a 

a 

f b 
a - b  
g b 
a { f+ 

- - f +  
g - f+  

Lattice 

C 

Reduced basis Number 

- - C  
_ d  + 

d + 
d -  

- d -  

b 
- - e  

e -  
- - e -  
- - a  

e -  
e + 

_ e  + 

- b  
C 
f+ 

- - f +  
a 

f+ 
f+ 
f -  

~f- -  
f -  

d + 
C 
C 

--c i f a>b  
- c  i f a<b  

e -  
~ e ~  

e + if c>b 
- e  ÷ if c<b 
- - e -  

a 

- a  if c>b 
- a  if c<b 

f+ 
- - f +  

f- if (a + c) 2 > b 2 
- f -  if (a + c) 2 < b 2 
- - f +  
- - a  

g+ 
a if (a + c) 2 > b 2 
a if (a + c) 2 < b 2 
g+ 

28 
29 
39 
10 
14 

41 
30 
20 
25 
37 
39 
10 
14 

41 
43 
20 
25 
37 
39 
27 
10 
14 
17 
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A reduced basis consists of  the shortest three vectors 
of  the lattice that  do not  lie in a plane. Candidates for 
basis vectors are therefore a, b, c and d e =½(a + b) for 
C lattices, e ± = ½ ( c + b )  for A lattices, f ± = ½ ( a + b + c )  
and g± =½(a + b - c )  for I lattices. Taking into account 
that 

d=d±=½(aZ+b2) l /Z<a or < b ,  

e=e+-=½(b2+cZ)m<b or < c ,  
f=_f± = {(a 2 + b 2 + c 2 + 2 a .  e) ~/2 < g 

= g + - = { ( a 2 + b Z + c Z - 2 a . e )  ~/2, f < b  or < c  

g < b  or < c ,  

we are left with the possibilities listed in Table 1. 
A m o n g  the 44 different types of  reduced cell, 13 

correspond to centred monoclinic lattices. In M S D  
these 13 types carry the numbers  10, 14, 17, 20, 25, 27, 
28, 29, 30, 37, 39, 41, and 43. These numbers  are given 
in the last column of  Table 1. We see that  among  the 
13 cases of  centred monoclinic lattice there are six that  
consist of  one type of  lattice exclusively: 28 and 29 are 
C lattices, 30 A lattices, 17, 27, and 43 I lattices. The 
conditions under which each of  the remaining seven 
cases is a C, A, or I lattice follow from equation (1) 
and are given in Table 2. 

We can do without A-centred cells if we do not re- 
quire a < c for the C-centred cell, i.e. : we can introduce 
a new conventional cell al, bx, el for A lattices: 

ax=c ,  b t = - b ,  c l = a ,  

a 

Fig. 1. The new convent ional  cell for I lattices. 

whence 

a = c i ,  b = - b l ,  c = a ~ ,  e + = { ( a ,  T b l ) = d x  :1:. 

F r o m  equation (1) we obtain then for A lattices 

a l .  bl = b l .  ci = 0 < - 2 a l .  c, < c~ < al z . (2) 

M S D  state in the footnote to their Table 5.1.3.1 that  
they have adopted this choice for the conventional cell. 
Following Niggli (1928), M S D  consider an /-centred 
cell for 17, 27, and 43 and a C-centred cell otherwise. 
However,  our  Table 1 shows that  for the M S D  choice 
of  the conventional cell, both  kinds of  centring come 
into play for 10, 14, 20, 25, 37, 39, and 41. 

We do not  want  to consider different kinds of 
centring for a single type of  reduced cell and we want  
to follow M S D  as closely as possible. This can be done 
by choosing for I lattices a new conventional cell (Fig. 
1) defined by vectors 

a ~ = a + c ,  b , = b ,  c l = - a ,  
whence 

a = - c , ,  b = b , ,  c = a l + c l - = m i ,  

f ~ : = ½ ( a l + b ~ ) = d 3 ,  g ± = - ( c ~ + d ~ ) - - l ~ .  

Table 3. Connexion between reduced and C centred con- 
ventional cell for  the cases 17, 27 and 43 

Trans fo rma t ion  
from reduced cell Num-  

ber to convent ional  cell Dimens ions  of  convent ional  cell 

a l =  [2(2d 2 -  rb. ~z[- la .  el)l '/2 

17 ]'10/1--10/101 b~ = [2(Ib. fz[ + [~l. ~[)],:z 
c, = [h z + c  z -  21a. el] ' a  

cos p~ = 2(1~i. ~-I - fi2)/ai • cl 

al = [4b z - ~2]1/2 
27 120/TO0/O 11 b~ = h 

c~ = ['b~ + c 2 -  fb .  ~1,:' 
cos fli = 2(b .  ~-~b2)/ai .  c, 

al = [a' + 22- 2lb. hi] m 
43 1-i'0/]']-2/100 bx = [4~ 2 - a 2 - 22 + 2la. f~ll '/= 

cos & = (la. gl - fib/a,, c, 

Table 2. The conditions under which a reduced matrix  o f  a given form describes a C, A, or I lattice 

N u m b e r  h .  h i~ .]J fz. fz 
~ . e  a . e  a . g  

10 A A C 
D D F 

14 A A C 
- D  - D  - F  

20 A B B 
D E E 

25 A B B 
- D  - E  - E  

37 A B C 
- D  -½A o 

39 A B C 
- D  o -½A 

41 A B C 
-{-B - E  0 

Conditions for 
C lattice A lattice I lattice 

2A +2F<  C 2A + 2 F >  C >4D C<4D 

2A - 2F< C 2A - 2F>__ C> 4D C< 4D 

A >4E A <4E 

A>_4E A<4E 

B>__4D B<4D 

4 B - A  < C 4 B - A  > C>_4D C<4D 

A>4E A<4E 

A C 31A - 2 
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Table 4. The shape of the C-centred conventional cell for the different types of reduced cell 
Relations between cell dimensions Number 

[ b l < d i c l < b i {  { 41 
b~ < at { b~ < cx cl <di 37 

dt--< ci ci < ll 39 
ll < C~ 27 

di<bi f l~<c~ 17 
ci < li cl <di 20 

dl=ci f a~-b~<-2a~.c~ 
2 2 

- 2 a ~ .  ct < a ~ -  ba 10 
d l  < c l  

di< mt ci <dl 25 
ai --< bi dl < at f b 2 -  a~ < - 2a~ . el 

di=ci  ~ - 2 a i . c l < b ~ - a ~  14 
d~<c~ 

mt <dl 43 
[ al<dt cl<at 30 

a~<<_c~ [ c~<d~ 28 
d~ < cl 29 

F rom equation (1) we obtain for I lattices 

a i  • b i  = b l  • c i  = 0 ,  

- a l .  ci < c~< - 2a l .  cl-< al z • (3) 

Combining  equations (1-3) and putting a l = a ,  b~=b,  
c~=e for C lattices, we see that all three kinds of 
centred monoclinic lattice can be obtained by C 
centring a cell a~, bt ci satisfying 

a i  • b i  = b i  • c t  = O, 

0 < - 2 a l . c l _ < a ~ ,  - a i . c l < c l  z. (4) 

We shall call this cell the C-centred conventional cell. 
Given a centred monoclinic lattice, this new conven- 
t ional cell can be characterized as follows: bl has the 
direction of the twofold symmetry axis, ax is the 
shortest vector perpendicular  to b~ such that the 
rectangular net in the a~b~ plane is centred, and ct is 
the shortest vector perpendicular  to b~ that makes an 
obtuse angle fl~ with a~. 

Table 3 gives the connexion between the reduced 
cell and our C-centred cell for the cases in which MSD 
use an / -cen t red  conventional  cell. 

Donnay,  Donnay,  Cox, Kennard  & King (1963) use 
a conventional  cell defined by vectors fi, 6, ~. satisfying 
g_< d. This choice is related to ours by 

= c~, 13 = - bl, ~ = a~ for C lattices 

~=a~, 13=b~, ~.=c~ for A lattices 

= a l + e l ,  I~=-b~ ,  f i = - c ~  for I lattices. 

In Table 4, we describe in a systematic manner  how 
the type of the reduced cell can be deduced from the 
shape of the C centred conventional cell. Notice that 

di = ½(al z + b~) t/2 < ai or < bi 

ll=(dZ~ + a l .  el +c~)m> di 
mt = (a~ + 2a i .  el + c~) 1/z > ci. 

C e n t r e d  o r t h o r h o m b i c  l a t t i c e s  

MSD use a conventional  cell satisfying at < bt < cl for 
face- and body-centred or thorhombic  lattices; they 
choose the side-centred or thorhombic lattice to be C -  

centred with ax < bl. The relations between the dimen- 
sions of  these conventional cells for the various forms 
of reduced bases are given in Table 5. 

Table 5. Relations between the dimensions of the con- 
ventional cell for centred orthorhombic lattices 

Relations between 
Bravais class cell dimensions Number 

Orthorhombic F b~ < 1/3a~ 16 
b~ >__ V3al 26 

Orthorhombic I a~ > e 8 
e=½(a~+b~+c~) ~/z a~<e<b~ 19 

e > bx 42 

Orthorhombic C bl < l/3a~ { cl >-- d 13 cl < d 23 
d=½(a~+b~),n b~>13a~ { c~>d 38 c~<d { a~<cl 36 

a~ > cl 40 

I am grateful to A. D. Mighell, A. Santoro, and J. 
D. H. Donnay  as well as to the referee for their con- 
structive criticism of an earlier version of this work. 
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